Товары для строительства

Товары для строительства

https://toolstyle.ru

Погрузитесь в мир «Давление под водой» с нашей захватывающей публикацией. Узнайте о влиянии давления на различные объекты и явления в морских глубинах. Расширьте свои знания о физике и природе водной среды!

Вычислив максимальную высоту водяного столба, Торричелли ответил также на вопрос, который, возможно, задавали себе и вы. Думаю, многие из вас хоть раз в жизни пробовали заниматься подводным плаванием с трубкой и ластами. Обычно такая трубка не более 30 сантиметров длиной, а вам, я уверен, очень хотелось, чтобы она была гораздо длиннее, и тогда вы могли бы нырять поглубже. А как вы думаете, как глубоко можно погрузиться под воду, дыша через трубку и не опасаясь при этом захлебнуться?

Мне очень нравится отвечать на этот вопрос прямо в учебной аудитории с помощью устройства под названием манометр (это неотъемлемая часть любого лабораторного оборудования). Прибор очень прост, его легко можно смастерить дома; чуть позже я его опишу. Итак, мне надо выяснить, насколько глубоко я могу опуститься ниже поверхности воды и при этом продолжать вдыхать воздух в легкие. Чтобы это определить, мы должны измерить гидростатическое давление воды на мою грудь, которое усиливается по мере погружения.

Окружающее нас давление, которое, как вы помните, одинаково на одинаковых уровнях, представляет собой сумму атмосферного и гидростатического давления. Плавая под поверхностью воды, я дышу воздухом, поступающим снаружи. Его давление равно одной атмосфере. Следовательно, когда я набираю воздух в легкие через трубку, его давление в легких становится таким же: одна атмосфера. Но давление, действующее на мою грудь, представляет собой сумму  атмосферного и гидростатического давления. Так что теперь давление на мою грудь выше,  чем давление внутри легких; эта разница равна гидростатическому давлению. Она не приводит ни к каким проблемам с выдохом, но при вдохе мне необходимо расширить грудь. И если гидростатическое давление слишком высоко из-за моего чересчур глубокого погружения, мне просто не хватит мышечной силы, чтобы преодолеть разницу давлений, и я не смогу сделать очередной вдох. Вот почему, если я хочу нырнуть глубже, мне нужно дышать сжатым воздухом – чтобы преодолеть гидростатическое давление. Однако долго дышать сильно сжатым воздухом вредно – причина, по которой количество времени для глубоких погружений строго ограничено.

Но вернемся к подводному плаванию с трубкой и ластами – насколько же глубоко можно плавать под водой с таким оснащением? Чтобы это выяснить, я устанавливаю манометр на стене лекционного зала. Представьте себе прозрачную пластиковую трубку длиной около 4 метров. Я прикрепляю один ее конец высоко на стене слева, а второй правее, приладив трубку в форме U. Обе части получаются чуть меньше 2 метров в длину. Затем наливаю в трубку клюквенный сок, и он, естественно, устанавливается в каждой части U-видной трубки на одинаковом уровне. После этого я дую в правый конец трубки, толкая сок вверх в ее левой части. Расстояние по вертикали, на которое я могу протолкнуть сок вверх, расскажет мне, как глубоко я могу погрузиться под воду с трубкой. Почему? Потому что это четкий показатель того, насколько большое давление способны «выдать» мои легкие для преодоления гидростатического давления воды – клюквенный сок и вода при таком применении абсолютно эквивалентны, просто красный сок более нагляден.

Я наклоняюсь, делаю глубокий выдох, затем вдыхаю, заполнив легкие воздухом, и изо всех сил дую в правый конец трубки. Мои щеки чуть не лопаются, глаза вылезают из орбит, и сок в левой стороне U-образной трубки сантиметр за сантиметром ползет вверх – угадайте, на сколько? – аж на 50 сантиметров. Это все, на что я способен, да и удержать жидкость на этом уровне я могу не дольше нескольких секунд. Итак, я протолкнул сок на левой стороне трубки на 50 сантиметров, а это значит, что я также протолкнул его вниз на те же 50 сантиметров в правой части, то есть в целом переместил столб сока по вертикали приблизительно на 100 сантиметров, или на метр. Конечно, когда мы дышим через трубку под водой, мы втягиваем воздух, а не выдуваем его; а что если это намного легче? И я провожу второй эксперимент: на этот раз высасываю сок из трубки, опять же изо всех сил. Результат, однако, примерно такой же; сок на той стороне, с который я сосу, поднимается где-то на 50 сантиметров – и соответственно опускается на те же 50 сантиметров в другой части. А я опять в полном изнеможении.

По сути, это была точная имитация подводного плавания на глубине одного метра, что можно считать эквивалентом одной десятой части атмосферы. Моих студентов эта демонстрация обычно сильно удивляет; они думают, что у них, молодых, результат будет намного лучше, чем у пожилого профессора. И я предлагаю самому крупному и, по-видимому, сильному парню подойти и попробовать. Он очень старается – лицо багровеет, глаза выпучены, – но итог шокирует силача. Его легкие перемещают столб лишь на пару сантиметров дальше, чем мои.

Оказывается, это действительно почти верхний предел того, насколько глубоко мы можем погрузиться под воду и продолжать дышать через трубку – всего на какой-то жалкий метр. И то дышать на этом уровне человек сможет в течение нескольких секунд. Вот почему большинство трубок для подводного плавания намного короче метра, как правило, всего сантиметров двадцать-тридцать. Попробуйте поплавать с более длинной трубкой – сгодится любая – и посмотрите, что будет.

Вы можете задаться вопросом, какая сила воздействует на вашу грудь, когда вы погружаетесь в воду, чтобы немного поплавать с маской и ластами. При погружении на один метр гидростатическое давление составляет около одной десятой атмосферы, или, иными словами, одну десятую килограмма на квадратный сантиметр. Площадь человеческой груди – что-то около тысячи квадратных сантиметров. Таким образом, сила, прилагаемая к вашей груди, составляет около 1100 килограммов, а сила, воздействующая на внутреннюю стенку грудной клетки из-за давления воздуха в ваших легких, – около тысячи килограммов. Стало быть, разность давлений в одну десятую дает разницу в целых 100 килограммов! Когда смотришь на это с такой точки зрения, все выглядит намного серьезнее, не так ли? А если бы вы погрузились на 10 метров, гидростатическое давление равнялось бы одной атмосфере, то есть килограмму на квадратный сантиметр поверхности, и сила, воздействующая на вашу бедную грудь, стала бы почти на тысячу килограммов (одну тонну) больше, чем противодействующая сила, создаваемая одноатмосферным давлением в ваших легких.

Вот почему азиатские ловцы жемчуга – некоторые из них раз за разом ныряют на 30-метровую глубину – очень сильно рискуют жизнью. Они не могут использовать маску с трубкой, поэтому им приходится задерживать дыхание, а поскольку это можно сделать не более чем на несколько минут, работать приходится очень быстро.

Теперь вы можете по достоинству оценить, каким чудом инженерной мысли является подводная лодка. Представим себе подводную лодку, погруженную на 10 метров, и предположим, что давление воздуха внутри нее равно одной атмосфере. Гидростатическое давление (в данном случае разница  между давлением внутри и снаружи лодки) составляет около 10 тысяч килограммов, то есть около 10 тонн, на квадратный метр, так что, как видите, даже очень маленькая подводная лодка должна быть крепкой, чтобы иметь возможность погружаться хотя бы на 10 метров.

Это делает поистине потрясающим достижение парня, который в начале XVII века изобрел подводную лодку, – Корнелиуса ван Дреббеля (тоже, как и я, голландца, чем я, должен признаться, весьма горжусь). Он мог опускаться на своем детище на глубину всего метров пять, но и в этом случае ему приходилось иметь дело с гидростатическим давлением в половину атмосферы, а ведь его лодка была построена из кожи и дерева! Согласно отчетам того времени ван Дреббель успешно маневрировал на одной из своих лодок на этой глубине во время испытаний на Темзе, в Англии. Рассказывают, что модель приводилась в движение шестью гребцами, могла перевозить шестнадцать пассажиров и оставаться под водой в течение нескольких часов. «Дыхательные трубки» над поверхностью воды удерживали специальные поплавки. Изобретатель хотел произвести впечатление на короля Якова I в надежде, что тот закажет несколько таких лодок для своего флота, но, увы, короля и его адмиралов изобретение не впечатлило и подводная лодка ван Дреббеля так никогда и не использовалась в военных действиях. Как секретное оружие, возможно, она действительно была не слишком перспективна, но с технической точки зрения она стала настоящим революционным изобретением.

То, как глубоко могут погружаться современные субмарины, – военная тайна, но принято считать, что они способны опускаться на глубину тысяча метров, где гидростатическое давление составляет около 100 атмосфер, то есть миллион килограммов (тысяча тонн) на квадратный метр. Неудивительно, что американские подлодки изготавливаются из высококачественной стали, а российские – из еще более прочного титана, потому могут погружаться еще глубже.

Продемонстрировать, что произойдет с подводной лодкой, если ее стенки окажутся недостаточно крепкими или если она погрузится слишком глубоко, легко. Для этого я подключаю вакуумный насос к банке из-под краски объемом в галлон и медленно выкачиваю из нее воздух. Разница давлений между воздухом снаружи и внутри не может превысить одну атмосферу (сравните с подводной лодкой!). Мы знаем, что банки для краски изготавливают из довольно крепкого материала, но прямо на наших глазах из-за разницы давлений банка сминается, словно алюминиевая жестянка из-под пива. Такое впечатление, будто невидимый великан схватил ее и сжал в кулаке. Многие из нас, в сущности, делали то же самое с пластиковой бутылкой из-под воды, высасывая из нее воздух, в результате чего она несколько сплющивалась. На интуитивном уровне вы можете подумать, что бутылка сминается из-за силы, с которой вы к ней присосались. Но на самом деле причина в том, что, когда я высасываю воздух из банки из-под краски или вы из пластиковой бутылки, давление наружного воздуха перестает испытывать достаточное противодействие внутреннего давления. Вот на что в любой момент готово давление нашей атмосферы. Буквально в любой момент.

Металлическая банка из-под краски, пластиковая бутылка на редкость банальные вещи, не так ли? Но если посмотреть на них глазами физика, можно увидеть нечто совершенно иное: баланс фантастически мощных сил. Наша жизнь была бы невозможна без таких балансов зачастую невидимых сил, возникающих вследствие атмосферного и гидростатического давления, и неумолимой силы тяготения. Эти силы настолько мощные, что даже незначительное нарушение их равновесия способно привести к настоящей катастрофе. Представляете, что будет в случае утечки воздуха через шов в фюзеляже самолета, летящего на высоте больше 7,5 километра (где атмосферное давление составляет всего около 0,25 атмосферы) со скоростью около 900 километров в час? Или если в крыше Балтиморского тоннеля, расположенного в 15–30 метрах ниже уровня реки Патапско, появится хотя бы тонюсенькая трещинка?

В следующий раз, идя по улице большого города, попробуйте думать как физик. Что вы на самом деле видите вокруг? Прежде всего результат яростных битв, бушующих внутри каждого здания, и я имею в виду отнюдь не войны в рамках офисной политики. По одну линию фронта находится сила земного притяжения, которая стремится притянуть всех и вся вниз – не только стены, полы и потолки, но и столы, кондиционеры, почтовые желоба, лифты, секретарей и исполнительных директоров и даже утренний кофе с круассанами. По другую действуют объединенные силы стали, кирпича и бетона и в конечном счете самой Земли, толкающие здания вверх.

Получается, что об архитектуре и строительстве можно думать как об искусстве борьбы с направленной вниз силой до ее полной остановки. Некоторые особенно воздушные небоскребы кажутся нам не подверженными воздействию гравитации. На самом деле ничего подобного – они просто перенесли битву на новую высоту в буквальном смысле слова. И если задуматься, вы поймете, что это лишь затишье перед бурей, которое носит временный характер. Строительные материалы подвержены коррозии, портятся и распадаются, а силы нашего природного мира вечны, безжалостны и неумолимы. И их победа – всего лишь вопрос времени.

Такая эквилибристика наиболее опасна в больших городах. Вспомним ужасную трагедию, произошедшую в Нью-Йорке в 2007 году, когда 83-летняя труба полуметровой ширины, проходящая под улицей, перестала сдерживать передаваемый по ней пар под высоким давлением, в результате чего возникший гейзер проделал в Лексингтон-авеню огромную дыру, куда провалился целый эвакуатор, и поднялся выше расположенного неподалеку 77-этажного небоскреба Крайслер-билдинг. Если бы столь потенциально разрушительные силы бо льшую часть времени не находились в состоянии сложнейшего баланса, никто из нас ни за что не согласился бы ходить по улицам мегаполисов.

И эти временные балансы в битве чрезвычайно мощных сил касаются не только творений рук человеческих. Возьмем, например, деревья. Спокойные, тихие, неподвижные, медленно растущие и безропотные, они используют десятки биологических стратегий для борьбы с силой тяготения и гидростатическим давлением. Какой же это подвиг – каждый год выпускать новые ветки, продолжать наращивать на стволе новые кольца, становясь еще крепче и сильнее, хотя при этом и земное притяжение, действующее на дерево, тоже усиливается. А еще дерево доносит соки до своих самых высоких ветвей. Разве не удивительно, что они вообще умудряются вырастать выше десяти метров? В моей соломинке вода смогла подняться только на 10 метров, так почему (и как) она поднимается в деревьях гораздо выше? Самые высокие секвойи достигают ста метров в высоту и все равно снабжают водой все верхние листья.

Вот почему я испытываю невероятное сожаление, видя большое дерево, сломанное бурей. Свирепым ветрам, а также льду и снегу, налипшему на его ветви, удается нарушить хрупкий баланс сил, которым это дерево до сих пор вполне успешно управляло. Думая об этом бесконечном сражении, я понимаю, что все больше ценю тот неимоверно далекий день, когда наши предки встали с четверенек на две ноги и начали укреплять свое положение в этом мире.

Наш канал в Телеграм

Какой насос для повышения давления воды лучше?


Для выбора насоса, который подходит для повышения давления воды в вашем доме, необходимо учитывать несколько факторов:

  1. Производительность: Определите, какое количество воды необходимо подавать в дом. Это зависит от количества ванных комнат, кухонных и прачечных машин, а также других приборов, которые используют воду. Выберите насос, который может обеспечить достаточную производительность воды для всех ваших нужд.

  2. Давление: Убедитесь, что выбранный насос может обеспечить достаточное давление воды для вашего дома. Обычно давление должно быть в пределах от 40 до 60 psi (фунтов на квадратный дюйм).

  3. Размер насоса: Размер насоса должен быть соответствующим для вашей системы водоснабжения. Если насос слишком маленький, то он не сможет обеспечить достаточное давление и производительность. С другой стороны, слишком большой насос может привести к повреждению труб и приборов, а также потере энергии.

  4. Тип насоса: Существует несколько типов насосов, включая центробежные насосы, периферийные насосы, джет-насосы и турбинные насосы. Выберите насос, который лучше всего подходит для вашей системы водоснабжения.

  5. Мощность: Мощность насоса должна соответствовать потребностям вашего дома. Если мощность насоса недостаточна, он может не справиться с повышением давления воды.

  6. Качество: Выберите насос хорошего качества от надежного производителя, чтобы обеспечить длительную работу и минимальные затраты на обслуживание.

В целом, выбор насоса зависит от многих факторов, поэтому лучше обратиться к специалисту или консультанту, чтобы получить рекомендации относительно наиболее подходящего насоса для вашей системы водоснабжения.