Товары для строительства

Товары для строительства

Пусковой конденсатор для однофазного двигателя — расчет емкости конденсаторов для эффективного подключения в однофазную сеть — СлавПромСтрой

Узнайте как правильно рассчитать емкость пускового конденсатора для трехфазного и однофазного двигателя при подключении в однофазную сеть на сайте SlavPromStroy. Наши советы помогут оптимизировать работу вашего однофазного двигателя с пусковым конденсатором. Получите максимальную эффективность и надежность в работе вашего оборудования с нашими рекомендациями и расчетами.

Трехфазный двигатель в однофазной сети без конденсаторов: схема и описание подключения

Подключение 3х фазного двигателя на 220 без конденсаторов

Как правило, схемы без конденсаторов применяются для запуска в однофазной сети трехфазных двигателей малой мощности – от 0,5 до 2,2 киловатта. Времени на запуск тратится примерно столько же, как и при работе в трехфазном режиме.

В этих схемах применяются симисторы, под управлением импульсов с различной полярностью. Здесь же присутствуют симметричные динисторы, подающие сигналы управления в поток всех полупериодов, имеющихся в питающем напряжении.

При достижении в конденсаторе уровня напряжения необходимого для переключения, происходит срабатывание динистора и симистора, вызывающее активацию силового двунаправленного ключа.

Второй вариант используется при запуске двигателей, частота вращения которых составляет 3000 об/мин. В эту же категорию входят устройства, установленные на механизмах, требующих большого момента сопротивления во время запуска. В этом случае необходимо обеспечение большого пускового момента. С этой целью в предыдущую схему были внесены изменения, и конденсаторы, необходимые для сдвига фаз, были заменены двумя электронными ключами. Первый ключ последовательно соединяется с фазной обмоткой, приводя к индуктивному сдвигу тока в ней. Подключение второго ключа – параллельное фазной обмотке, что способствует образованию в ней опережающего емкостного сдвига тока.

Данная схема подключения учитывает обмотки двигателя, смещенные в пространстве между собой на 120С. При настройке определяется оптимальный угол сдвига тока в обмотках фаз, обеспечивающий надежный пуск устройства. При выполнении этого действия вполне возможно обойтись без каких-либо специальных приборов.

Пуск трёхфазного электродвигателя без конденсатора

Как известно, для запуска трехфазного электродвигателя (ЭД) с короткозамкнутым ротором от однофазной сети наиболее часто в качестве фазосдвигающего элемента применяют конденсатор. При этом емкость пускового конденсатора должна быть в несколько раз больше емкости рабочей конденсатора. Для ЭД чаще всего применяемых в домашнем хозяйства (0,5…3 кВт), стоимость пусковых конденсаторов соизмерима со стоимость к электродвигателя. Поэтому желательно избежать применения дорогостоящих пусковых конденсаторов, работающих лишь кратковременно. В тоже время применение рабочих, постоянно включенных фазосдвигающих конденсаторов можно считать целесообразным, так как они позволяют загрузить двигатель на75…85% его мощности при 3-фазном включении (без конденсаторов его мощность снижается примерно на 50%).

Вращающий момент, вполне достаточный для запуска указанных ЭД от однофазной сети 220 В/50 Гц, можно получить за счет сдвига токов по фазе в фазных обмотках ЭД, применив для этого двунаправленные электронные ключи, включение которых осуществляется в определенное время.

Исходя из этого, для пуска 3-фазных ЭД от однофазной сети автором были разработаны и отлажены две простые схемы. Обе схемы опробованы на ЭД мощностью 0,5…2,2 кВт и показали очень хорошие результаты (время пуска не намного больше, чем в трехфазном режиме). В схемах применяются симисторы, управляемые импульсами разной полярности, и симметричный динистор, который формирует управляющие сигналы в течение каждого полупериода питающего напряжения.

Первая схема (рис.1) предназначена для пуска ЭД с номинальной частотой вращения, равной или меньше 1500 об/мин, обмотки которых соединены в треугольник. За основу этой схемы была взята схема [1], которая упрощена до предела. В этой схеме электронный ключ (симистор VS1) обеспечивает сдвиг тока в обмотке «С» на некоторый угол (50…70°), что обеспечивает достаточный вращающий момент.

Фазосдвигающим устройством является RC-цепочка. Изменяя сопротивление R2, получают на конденсаторе С напряжение, сдвинутое относительно питающего напряжения на некоторый угол. В качестве ключевого элемента в схеме применен симметричный динистор VS2. В момент, когда напряжение на конденсаторе достигнет напряжения переключения динистора, он подключит заряженный конденсатор к управляющему выводу симистора VS1 i включит этот двунаправленный силовой ключ.

Вторая схема (рис.2) предназначена для пуска ЭД с номинальной частотой вращения равной 3000 об/мин, а также для электродвигателей, работающих на механизмы с большим моментом сопротивления при пуске. В этих случаях требуется значительно больший пусковой момент. Поэтому была применена схема соединения обмоток ЭД «разомкнутая звезда ([2], рис. 14,в), которая обеспечивает максимальный пусковой момент. В указанной схеме фазосдвигающие конденсаторы заменены двумя электронными ключами. Один ключ включен последовательно с обмоткой фазы «А» и создает в ней «индуктивный» (отстающий) сдвиг тока, второй — включен параллельно обмотке фазы «В» и создает в ней «емкостной» (опережающий) сдвиг тока. Здесь учитывается то, что сами обмотки ЭД смещены в пространстве на 120 электрических градусов одна относительно другой.

Наладка заключается в подборе оптимального угла сдвига токов в фазных обмотках, при котором происходит надежный запуск ЭД. Это можно сделать без применения специальных приборов. Выполняется она следующим образом.

Подача напряжения на ЭД осуществляется пускателем нажимного «ручного» типа ПНВС-10, через средний полюс которого подключается фазосдвигающая цепочка. Контакты среднего полюса замкнуты только при нажатой кнопке «Пуск».

Нажав кнопку «Пуск», путем вращения движка подстроечного сопротивления R2 подбирают необходимый пусковой момент. Так поступают при наладке схемы, показанной на рис.2.

При наладке схемы рис.1 из-за прохождения больших пусковых токов некоторое время (до разворота) ЭД сильно гудит и вибрирует. В этом случае лучше изменять величину R2 ступенями при снятом напряжении, а затем, путем кратковременной подачи напряжения, проверять, как происходит запуск ЭД. Если при этом угол сдвига напряжения далек от оптимального, то ЭД гудит и вибрирует очень сильно. По мере приближения к оптимальному углу двигатель «пытается» вращаться в ту или другую сторону, а при оптимальном запускается достаточно хорошо.

Автор производил отладку схемы, показанной на рис. 1, на ЭД 0,75 кВт 1500 об/мин и 2,2 кВт 1500 об/мин, а схемы, показанной на рис.2, на ЭД 2,2 кВт 3000 об/мин.

При этом опытным путем установлено, что подобрать значения R и С фазовращающей цепочки, соответствующие оптимальному углу, можно предварительно. Для этого нужно последовательно с ключом (симистором) соединить лампу накаливания 60 Вт и включить их в сеть ~220 В. Изменяя величину R, надо установить напряжение на лампе 170 В (для схемы рис.1) и 100 В (для схемы рис.2). Эти напряжения замерялись стрелочным прибором магнитоэлектрической системы, хотя форма напряжения на нагрузке не синусоидальная.

Необходимо отметить, что добиться оптимальных углов сдвига токов можно при различных сочетаниях значений R и С фазосдвигающей цепочки, т.е. изменив номинал емкости конденсатора, придется подобрать и соответствующее ему значение сопротивления.

Детали:

Эксперименты проводились с симисторами ТС-2-10 и ТС-2-25 без радиаторов. В этой схеме они работали очень хорошо. Можно применить и другие симисторы с двухполярным управлением на соответствующие рабочие токи и класса напряжения не ниже 7. При использовании импортных симисторов в пластмассовом корпусе их следует установить на радиаторы.

Симметричный динистор DB3 можно заменить отечественным КР1125. У него немного меньше напряжение переключения. Возможно, это и лучше, но этот динистор очень сложно найти в продаже.

Конденсаторы «С» любые неполярные, рассчитанные на рабочее напряжение не менее 50 В (лучше — 100 В). Можно применить также два полярных конденсатора, включенных последовательно-встречно (в схеме рис.2 их номинал должен быть 3,3 мкФ каждый).

Принципиальная схема еще одного устройства запуска электродвигателя:

Устройство работает следующим образом:

при максимальном сопротивлении на R7 ключ закрыт и сдвиг фаз наибольший, соответственно пусковой момент максимальный. По мере выхода электродвигателя на максимальные обороты сопротивление устанавливают такое, чтобы сдвиг фаз был оптимальным для работы электродвигателя. Тиристорный ключ позволяет отказаться от пусковых и рабочих конденсаторов, а это при мощности электродвигателя от 2 кВт и выше даёт огромные преимущества.

Все резисторы типа МЛТ

VT1, VT2 – любые из этой серии

Д231 и КУ 202 любые на ток 10А и напряжение 300 вольт

Всю схему можно собрать на печатной плате. В моём случае мощность электродвигателя была 600 Вт, поэтому тиристоры не стал устанавливать на радиаторы (нагрева вообще не было).

Моя изменения при которых схема стабильно заработала:

Транзисторы VT1 и VT2 заменил на BC547 и BC557 соответственно. R6 — 22 кОм, R3 — 10 кОм, R4 — 22 кОм, R2 — 47 кОм, R1 — 56 кОм, R7 — 20 кОм. VD3, VD4 — 1N4007, VD1, VD2 — Д233ВП, VD5 — Д814Д.

Печатная плата здесь.

Литература:

1. // Сигнал. — 1999. — №4.

2. С.П. Фурсов Использование трехфазных электродвигателей в быту — Кишинев: Картямолдовенскэ, 1976.

Выбор схемы подключения

Обмотки одного и того же двигателя можно соединить либо звездой, либо треугольником. Выбирать схему соединения нужно по нагрузке. Если трехфазный мотор в однофазной сети будет приводить в движение какой-либо маломощный механизм, то можно выбрать схему соединения «звезда». При этом рабочий ток будет невелик, но габариты и цена конденсаторной батареи значительно снизятся.

В случае большой нагрузки при работе или в момент пуска, обмотки двигателя обязательно должны быть включены по схеме «треугольник». Это обеспечит достаточный ток для длительной работы. К недостаткам следует отнести значительную цену и габариты конденсаторов.

Проверка и сборка

Далее делают сборку двигателя, наживив основные болты для «прозвонки» и проверки токов каждой фазы. С помощью токовых клещей проверяют токи обмоток каждой из фаз через нагрузку и автоматический выключатель. Они должны быть одинаковыми. Затем двигатель собирают, закручивая все болты и проверяя его на правильность вращения и работу в холостом режиме.

Если всё работает нормально, то механизм разбирают снова для покрытия обмоток статора лаком. Статор помещают в лак для пропитки обмоток и заполнения пустот. Затем его поднимают, давая стечь лаку, и сушат на открытом воздухе или в специальной сушилке. Для ускорения сушки применяют лампу накаливания мощностью 0,5-1 кВт, вставленную в статор и включённую в сеть.

После просушки двигателя производят его полную сборку, ещё раз проверяют сопротивление изоляции. Делают проверку двигателя на холостом ходу. Лучше для этой цели использовать понижающий трансформатор и автоматический выключатель (желательно УЗО). Только после проверки можно использовать двигатель на полном напряжении.

Правильно провести перемотку помогут следующие советы специалистов:

При проведении всех работ необходимо пользоваться исправным инструментом, а также заведомо исправными измерительными приборами и тестерами

Особое внимание нужно обратить на исправность защиты элементов питания , качество изоляции и влажность материалов, применяемых во время ремонта

Однофазный асинхронный электродвигатель с короткозамкнутым ротором должен иметь пусковую и рабочую обмотки. Их расчет производят так же, как расчет обмоток трехфазных асинхронных двигателей.

Число проводников в пазу рабочей обмотки (укладывается в 2/3 пазов статора) N р = (0.5 ÷ 0.7) x N x U с / U , где N — число проводников в пазу трехфазного электродвигателя; U с — напряжение однофазной сети, В; U — номинальное напряжение фазы трехфазного двигателя, В.

Меньшие значения коэффициента берутся для двигателей большей мощности (около 1 кВт) с кратковременным и повторно-кратковременным режимами работы.

Диаметр (мм) провода по меди рабочей обмотки, где d — диаметр провода по меди трехфазного двигателя, мм.

Пусковая обмотка укладывается в 1/3 пазов.

Наиболее распространены два варианта пусковых обмоток: с бифилярными катушками и с дополнительным внешним сопротивлением.

Обмотка с бифилярными катушками наматывается из двух параллельных проводников с разным направлением тока (индуктивное сопротивление рассеяния бифилярных обмоток близко к нулю).

Применение однофазных двигателей в быту

Кроме трехфазных моторов широкое распространение получили и однофазные асинхронные двигатели. Они повсюду применяются в мощных насосах, в стиральных машинах, в тепловых и вентиляционных системах, а также пользуются популярностью у частных предпринимателей, которые решили открыть собственную пилораму.

Такие двигатели включают в обычную сеть на 220 В. Внутри этих моторов находятся две обмотки – одна из них пусковая, а другая рабочая. При создании сдвига фаз между ними получается вращающееся магнитное поле – это основное условие для запуска этих двигателей. Сдвигают фазы, как и в случае с трехфазными моторами, путём добавления ёмкостей. Схема подключения однофазного двигателя очень похожа на схему с трехфазным мотором.

Расчёт конденсаторов производят по такой же формуле или учитывают, что на каждый киловатт мощности мотора нужно 75 мкФ ёмкости. Это для рабочего конденсатора, а для пускового — в три раза больше. Кроме того, конденсаторы должны выдерживать напряжение не менее 300 В. При малой мощности двигателя вполне обходятся одной рабочей ёмкостью.

Смотрите также

Комментарии 68

скорее всего ваш двигатель высоко оборотистый для этой схемы. бывают stroysvoy-dom.ru/trexfazn…j-seti-bez-kondensatorov/

Вот так у мня www.drive2.ru/b/1604719/ И токарник работает и бетономес, и компрессор.

проще простого от руки раскручиваеш и подаеш напряжение))))

я вообще сделал преобразователь из 4 кв мотора с кондёром а от него запускаю 3.4 кв на такарном станке и всё работает.

Без конденсатора не пускал, но поделюсь опытом по конденсаторам: Для пуска под нагрузкой нужен пусковой конденсатор, который в 2 раза больше чем рабочий. Т.к. конденсаторы дорогие, мы с ребятами схитрили, использовали в качестве пускового конденсатора электролиты! Время их работы пол секунды, за это время нагреться не успевают.

Вы двигатель на треугольник переключили? Надо режим выбрать по лучшему запуску. Это фазовый регулятор можно его проверить включив последовательно лампочку накаливания. Можете использовать другой фазовый регулятор или диммер, но надо проверить какой мощности можно подключать к нему индуктивную нагрузку.

двигатель уже в треугольнике

А вы если не секрет, для чего это двигатель хотите применить и почему на кондерах не хотите сделать сдвиг фаз?

Ну вот тебе расчет на каждые 100Вт нужно 7мкф это сколько нужно кондеров? Одним словом дох…

Вы с электронной схемой запуска теряете половину мощности двигателя. С кондерами все зависит от емкости конденсатора но тоже будет мощность меньше. От емкости конденсатора зависитпусковой момент двигателя потому и спрашивал для чего хотите применить двигатель. У меня на компрессоре в гараже стоит асинхронник на 1.5квт, и кондеров 80мкф хватает для его пуска вполне. Надо больше бери www.chipdip.ru/product0/9000239391/

Я бы тебе посоветовал обратиться по этому вопросу к этому товарисчу churekov

хорошо спрошу его

ус-во на схеме тупо регулирует ток в обмотке. А надо смещать фазу.

Регулятор этим и занимается он сдвигает вектор

я вижу тут фазо-импульсный «диммер», который регулирует мощность. в обмотке.

не, теоретически, это работать может, т.к. фазоимпульсный «диммер» именно по такому принципу работает: регулируемая задержка подачи тока относительно начала полупериода

но я всё-таки склоняюсь к тому, что это — «удаление гланд через задницу»

Я С тобой тут соглашусь с гландами

Для запуска 3х фазника необходим сдвиг фаз в данной схеме не понятно каким образом это достигается. Так — как при включении через кондеры ток опережает напругу на 90 град и создается крутящий момент

Схема подключения электродвигателя 380 на 220 вольт с конденсатором

Подключить трехфазный двигатель в однофазную сеть несложно и с этим справится даже электромонтер-любитель. Если возникают затруднения, следует обратиться к друзьям или знакомым. Рядом всегда найдется грамотный электрик.

Обмотки трехфазных двигателей с рабочим напряжением 380 на 220 для работы в сети на триста восемьдесят вольт соединены по схеме звезда. Это значит, что концы обмоток соединены между собой, а начала подсоединяются в сеть. Для возможности работы электродвигателя в однофазной сети 220 вольт необходимо для начала его обмотки переключить на схему треугольник. Т.е. конец первой соединить с началом второй, конец второй с началом третьей и конец третьей с началом первой.

Эти соединения и будут выводами двигателя для подключения к электропитанию. Два вывода необходимо через двухполюсной выключатель подсоединить к нулю и фазе сети в 220 вольт. Третий вывод через рабочие конденсаторы, соединить с каким либо из первых двух выводов из двигателя. Можно пробовать запускать.

Если запуск прошел успешно, двигатель работает с приемлемой мощностью и не сильно греется, то можно ничего не менять. Получилась работоспособная схема только с рабочими конденсаторами.

В случае запуска под нагрузкой или просто тяжелого пуска двигателя, он может раскручиваться долго и не достигать приемлемой мощности. Тогда потребуется включить в схему еще и пусковую емкость. Пусковые конденсаторы выбираются того же типа, что и рабочие. Одинаковой или в два раза превышающей ёмкость рабочих. И подключаются параллельно им. Используются только для пуска электродвигателя.

Очень удобно для такого пуска использовать своеобразный выключатель серии АП

Важно чтобы он был в исполнении с блок контактами. В нем при нажатии кнопки Пуск пара контактов остается замкнутыми до нажатия на кнопку Стоп

К ним подключают выводы двигателя и электросеть. Третий контакт замкнут только во время удержания кнопки Пуск, через него и подсоединяется пусковой конденсатор. Выключатели такого типа, только без предохранительной аппаратуры часто устанавливали на старые советские центрифуговые стиральные машинки.

Подключаем 3-х фазный электродвигатель без конденсаторов от 220В

Подключаем 3-х фазный электродвигатель без конденсаторов от 220В

Довольно часто в быту приходится использовать трехфазные электродвигатели для своих самоделок (наждаки, циркулярные пилы и т.п.) в однофазной сети 220 вольт. Как правило, для запуска трёхфазника в домашней сети применяют давно известный способ — одну из обмоток подключают через фазосдвигающий конденсатор. Но у этого решения есть серьёзный недостаток.

Во-первых, огромные размеры бумажных конденсаторов (особенно если используются пусковые ёмкости) иногда сопоставимы с размером самого электродвигателя. Во-вторых, в настоящее время достать такие конденсаторы непросто. А можно ли использовать трёхфазный электродвигатель в однофазной сети вообще без конденсаторов? Оказывается можно! Хочу поделиться найденной и проверенной на практике альтернативной заменой конденсаторов тиристорным ключом. Используя тиристорный ключ, можно запустить трёхфазный электродвигатель без использования конденсаторов. Схема ключа проста и не требует настройки. Готовый и помещённый в подходящий корпус тиристорный ключ занимает место не более пачки сигарет.

Принципиальная схема устройства:

Устройство работает следующим образом: при максимальном сопротивлении на R7 ключ закрыт и сдвиг фаз наибольший, соответственно пусковой момент максимальный. По мере выхода электродвигателя на максимальные обороты сопротивление устанавливают такое, чтобы сдвиг фаз был оптимальным для работы электродвигателя. Тиристорный ключ позволяет отказаться от пусковых и рабочих конденсаторов, а это при мощности электродвигателя от 2 кВт и выше даёт огромные преимущества. Все резисторы типа МЛТ VT1, VT2 – любые из этой серии Д231 и КУ 202 любые на ток 10А и напряжение 300 вольт Всю схему можно собрать на печатной плате. В моём случае мощность электродвигателя была 600 Вт, поэтому тиристоры не стал устанавливать на радиаторы (нагрева вообще не было).

Моя изменения при которых схема стабильно заработала: Транзисторы VT1 и VT2 заменил на BC547 и BC557 соответственно. R6 — 22 кОм, R3 — 10 кОм, R4 — 22 кОм, R2 — 47 кОм, R1 — 56 кОм, R7 — 20 кОм. VD3, VD4 — 1N4007, VD1, VD2 — Д233ВП, VD5 — Д814Д.

Печатная плата:

Схема была испытана на двигателе мощностью 3 кВт.

Смотрите также:

  • Способы включения трехфазных двигателей в однофазную сеть
  • Шир И. — Сами устанавливаем электрооборудование (2007)
  • Простой детектор проводки своими руками на основе мультиметра
  • Кашкаров А.П. — Автономное электроснабжение частного дома своими руками (2015)
  • Устройство защитного отключения (УЗО): Теории и практика использования

Для чего нужен конденсатор

Наиболее распространены и применяются в станках трехфазные асинхронные двигатели переменного тока с короткозамкнутым ротором. Их подключение к однофазной сети мы и будем рассматривать. При включении двигателя в трехфазную сеть по трем обмоткам, в разный момент времени протекает переменный ток. Этот ток создает вращающееся магнитное поле, которое начинает вращать ротор двигателя.

При подключении двигателя к однофазной сети, ток по обмоткам течет, но вращающегося магнитного поля нет, ротор не крутится. Выход из этой ситуации был найден. Самым простым и действенным способом оказалось параллельное подключение конденсатора к одной из обмоток двигателя. Конденсатор, импульсно получая и отдавая энергию создает смещение фазы, в обмотках двигателя получается вращающееся магнитное поле и он работает. Емкость постоянно находится под напряжением и называется рабочим конденсатором.

Трехфазный двигатель в однофазной сети без конденсаторов: схема и описание подключения

Трёхфазный асинхронный двигатель можно запускать в однофазной сети, без подключения конденсаторов, а с использованием самодельного пускового электронного устройства. Схема его очень проста: на двух тиристорах, с тиристорными ключами и транзисторным управлением.

Преимущество предлагаемого пускового устройства в том, что значительно уменьшается потеря мощности двигателя. При пуске трехфазного двигателя 220 В помощью конденсатора, потеря мощности составляет минимум 30%, а может достигать 50%. Использование этого пускового устройства снижает потерю мощности до 3%, максимум составит 5%.

Схема пускового устройства для трёхфазного двигателя.

В схеме можно использовать любые тиристоры, ток которых не менее 10 А. Диоды 231, также 10-амперные. Примечание: у автора в схеме установлены диоды 233, что не имеет значения (только они идут по напряжению 500 В) −поставить можно любые диоды, которые имеют ток 10 А и удерживают более 250 В. Устройство компактно. Автор схемы собрал резисторы просто наборами, чтобы не тратить время на подборку резисторов по номиналу. Теплоотвод не требуется. Установлен конденсатор, стабилитрон, два диода 105. Схема получилась очень простая и эффективная в работе.

Пусковое устройство подключается к двигателю вместо конденсатора.

Подключенный к устройству резистор, позволяет регулировать обороты двигателя. Устройство также можно включить на реверс.

С данным пусковым устройством двигатель запускается мгновенно и работает без каких-либо проблем. Такую схему можно использовать практически на любом двигателе мощностью до 3 кВт.

В итоге при подключении двигатель стартует на своей максимальной мощности и практически без ее потери в отличие от стандартной схемы с использованием конденсатора.

Работа этого пускового устройства показана в этом видео:

Популярные самоделки на нашем сайте

  • Отрезной станок по металлу своими руками: подробное…
  • Ветрогенератор своими руками: фото и описание изготовления
  • Стельки с подогревом своими руками (20 фото + описание)
  • Печка щепочница складная: чертежи, схема сборки
  • Профилегиб своими руками: фото и описание самоделки
  • Самокат с мотором своими руками: фото, описание
  • Печь длительного горения своими руками: фото и…
  • Кран гусь своими руками: чертежи, фото и описание
  • Заточной станок своими руками: фото и описание
  • Самодельная печь из полена: 17 фото и описание
  • Мотоблок на газу: подробное описание установки газа…
  • Самодельный компрессор из холодильника: схема, описание

Стандартное подключение

Все трехфазные асинхронные двигатели подсоединяют в сеть на 380 В. При этом они выдают максимальную мощность и наибольшие обороты. Но не у каждого хозяина есть возможность провести к себе на участок все три фазы. Это связано с финансовыми затратами по установке специальных счётчиков и различных щитов учёта электроэнергии. К тому же само оформление документов занимает довольно много времени.

По стандартной схеме, чтобы подключить трехфазный двигатель к 380 В, производят соединение трёх фаз со штатными клеммами мотора через пускатели, с помощью которых осуществляется запуск. В распределительной коробке двигателя обычно свободны три контакта, к которым и цепляют три фазы. Совершенно нет никакой разницы, какую фазу подсоединить к конкретному проводу. Правда, есть один нюанс – при смене проводов подключения, не трогая третий провод, получают вращение электродвигателя в другую сторону, что иногда необходимо в хозяйственной деятельности.

Соединение обмоток

Схемы соединения обмоток в двигателе только две – «звезда» или «треугольник». И оттого, как они соединены, зависят рабочие характеристики мотора. При любом соединении мощность не теряется. Зато при чрезмерной нагрузке двигатели со «звездой» медленнее скидывают свои обороты, чем их собратья с «треугольником». Отсюда делают вывод, что моторы со «звездой» требуют меньше пускового тока и, следовательно, менее нагружают электросеть при запуске.

Двигатели с соединением обмоток по «треугольнику» выдают свою мощность до конца даже при большой нагрузке, совершенно не теряя оборотов. Зато потом резко останавливаются, и для их следующего запуска требуется огромный пусковой ток, что чрезмерно перегружает электрическую сеть.

В промышленности используют обе схемы соединения. Двигатели со «звездой» применяют там, где требуется их систематическое включение и выключение, например, на каких-либо линиях производства, переработки, сборки и так далее. Моторы, у которых обмотки соединены по «треугольнику», нужны для работы на постоянных режимах нагрузки, например, выгрузной конвейер из шахты и другое.

В личных подсобных хозяйствах чаще всего используют двигатели, у которых соединение обмоток сделано по принципу «звезда». По такой схеме двигатели легко запускаются, а это не нагружает электрическую сеть частного дома.

Трехфазный двигатель в однофазной сети

Трехфазные асинхронные электродвигатели не требуют дополнительных устройств для запуска и работы. Нужны лишь контакторы или иные устройства подачи трехфазного напряжения. Однако при включении двигателя в однофазную сеть используются другие способы запуска.


Фазосдвигающий конденсатор

Существует простой способ, позволяющий запитать трехфазный двигатель от бытовой однофазной сети с напряжением 220 В. Трехфазное напряжение получают путем сдвига фаз с помощью фазосдвигающего конденсатора. Делается это так.

В однофазной сети имеются два провода (фаза и ноль), между которыми существует сдвиг фаз 180 градусов. Для включения трехфазного двигателя нужны три проводника, напряжения на которых должны иметь сдвиг фаз 120 градусов. Поэтому, если подключить один из выводов двигателя к фазному проводнику напрямую, а другой – через фазосдвигающий конденсатор, то в совокупности с нулевым проводником и обмотками такая система будет трехфазной.

Другими словами, будет обеспечен нужный режим питания.

Для расчета номинала фазосдвигающего конденсатора можно воспользоваться приближенной формулой:

С = k*I / U,

где k – коэффициент, равный 4800 для схемы подключения «треугольник», 2800 – для «звезды», I – номинальный ток двигателя (указывается на шильдике), U – фазное напряжение (в нашем случае – 220 В).

Рабочее напряжение конденсатора следует выбирать не менее 400 В, при этом желательно использовать специальные конденсаторы для электродвигателей, на частоту 50 – 60 Гц.


Пусковой конденсатор

Приведенная выше формула справедлива для номинального тока. Но двигатель работает не только на номинале. При пуске его ток может превышать номинальное значение в 5-7 раз, а при работе – быть ниже в 2-3 раза (холостой ход). В результате момент на валу при включении будет мал, и двигатель будет разгоняться очень долго либо вообще не сможет запуститься. Поэтому для запуска используют дополнительный пусковой конденсатор, который подключают к рабочему (фазосдвигающему) на время разгона (3-5 секунд).

Обычно емкость пускового конденсатора выбирают в 2-5 раз больше, в зависимости от требуемого момента при пуске и времени разгона.

Для подключения пускового конденсатора используют специальные ручные пускатели, в которых время пуска равно времени нажатия на двухпозиционную кнопку «Пуск». Пока оператор держит «Пуск» в позиции без фиксации, подключаются рабочий и пусковой конденсаторы. Как только оператор отпускает кнопку, она переходит в фиксированную позицию, и в схеме остается лишь рабочий конденсатор. Остановка двигателя производится кнопкой «Стоп». Кроме ручных пускателей могут использоваться релейные и электронные схемы.

Данный способ не применяется на практике для двигателей более 2,2 кВт из-за низкого КПД и большой емкости конденсаторов.


Двигатель с пусковой обмоткой

Конденсатор также используется в случае, когда двигатель имеет две обмотки – рабочую и пусковую. Рабочая обмотка подключается к питающему однофазному напряжению (220 В) напрямую. Пусковая обмотка имеет меньший ток и подключается через фазосдвигающей конденсатор. Совместно обе обмотки имеют такую конфигурацию, что формируют внутри статора вращающееся магнитное поле.

Емкость фазосдвигающего конденсатора обычно указывается на шильдике двигателя. На время пуска и разгона может применяться дополнительный конденсатор. Такой двигатель называют конденсаторным, и он предназначен для работы только в однофазной сети.

Расчет параметров однофазных и трехфазных систем

Добро пожаловать в первую часть серии статей, посвященных основам электрических расчетов. В этом месяце мы обсудим самые основные расчеты — для тока (I) и киловатт (кВт). Мы также покажем вам, как вы можете выполнять эти вычисления «в уме» с очень разумной точностью, используя константы.

Вы можете спросить: «Что такое константа?» Примером константы, с которой вы очень хорошо знакомы, является число пи (π), которое получается путем деления длины окружности на ее диаметр. Независимо от того, каковы длина окружности и диаметр соответствующего круга, их отношение всегда равно пи. Вы можете использовать константы, применимые к определенным однофазным и трехфазным напряжениям, для расчета тока (I) и киловатт (кВт). Давайте посмотрим, как это сделать.

Однофазные расчеты

Базовая электрическая теория говорит нам, что для однофазной системы

кВт = (В × I × КМ) ÷ 1000.

Для простоты предположим, что коэффициент мощности (PF) равен единице. Следовательно, приведенное выше уравнение становится

кВт = (В × I) ÷ 1000.

Решение для I, уравнение становится

I = 1000 кВт ÷ В (Уравнение 1)

Теперь, если мы посмотрим на часть «1000 ÷ V» этого уравнения, вы увидите, что, подставив соответствующее однофазное напряжение для «V» и разделив его на «1000», вы получите конкретное число (или константа) вы можете использовать, чтобы умножить «кВт», чтобы получить потребляемый ток этой нагрузки при соответствующем напряжении.

Например, константа для расчета 120 В равна 8,33 (1000 ÷ 120). Используя эту константу, уравнение 1 становится

I = 8,33 кВт

.

Итак, если у вас есть нагрузка 10 кВт, вы можете рассчитать потребление тока как 83,3 А (10 × 8,33). Если у вас есть оборудование, которое потребляет 80 А, то вы можете рассчитать относительный размер требуемого источника питания, который составляет 10 кВт (80 ÷ 8,33).

Используя ту же процедуру, но вставив соответствующее однофазное напряжение, вы получите следующие однофазные константы, как показано в Таблица 1 .

3-фазные расчеты

Для 3-фазных систем мы используем следующее уравнение: 

кВт = (В × I × КМ × 1,732) ÷ 1000.

Опять же, приняв единицу PF и решив это уравнение для «I», вы получите:

I = 1000 кВт ÷ 1,732 В .

Теперь, если вы посмотрите на часть этого уравнения «1000 ÷ 1,732 В», вы увидите, что, подставив соответствующее 3-фазное напряжение для «В» и умножив его на 1,732, вы можете затем разделить полученную величину на « 1000», чтобы получить конкретное число (или константу), которое вы можете использовать, чтобы умножить «кВт», чтобы получить потребляемый ток этой 3-фазной нагрузки при соответствующем 3-фазном напряжении.

Таблица 2 перечисляет каждую 3-фазную постоянную для соответствующего 3-фазного напряжения, полученного из приведенного выше расчета.

ЧРП для однофазных приложений

ЧРП и однофазные двигатели переменного тока

Моя первая работа вне школы была связана с производителем двигателей, обеспечивающим техническую поддержку. Находясь на Среднем Западе, у нас было много фермеров и сельскохозяйственных клиентов.

Их применение варьировалось от запуска вентиляторов, насосов, элеваторов, мешалок, шнеков, конвейеров и т. д. У сельскохозяйственных установок часто не было доступа к трехфазному питанию, и им приходилось обходиться однофазным напряжением 230 В. Мы продали много однофазных двигателей Farm Duty/Ag для этих установок.

Люди часто хотели, чтобы двигатели работали на пониженных скоростях, поэтому они спрашивали: «Можно ли добавить частотно-регулируемый привод к моему однофазному двигателю?» Как правило, однофазные двигатели не могут работать с частотно-регулируемым приводом. Однако можно подавать однофазное напряжение на ЧРП и выводить переменное напряжение на трехфазный асинхронный двигатель. В этой статье описывается, как это работает, и предлагаются некоторые соображения.

Вездесущий однофазный двигатель для сельскохозяйственных работ.

Проблема однофазных двигателей с питанием от сети

Одной из проблем при эксплуатации больших однофазных двигателей переменного тока от сети является пусковой ток. Однофазный двигатель мощностью 10 л.с. будет потреблять номинальную мощность 38 А (при 230 В).

Но этот двигатель (конструкция NEMA B) при запуске будет потреблять в 6-8 раз больше номинального тока – или 234 ампера! Это высокое энергопотребление может вызвать проблемы на распределительном щите. Даже утилиты могут заметить.

Однофазный двигатель мощностью 10 л.с. обеспечивает пусковой ток 234 А при напряжении 230 В. (Нажмите, чтобы увеличить)

Справедливости ради стоит отметить, что проблемы, связанные с высокими пусковыми токами, также затрагивают трехфазный двигатель с питанием от сети. Но в случае с трехфазным двигателем человек может легко добавить ЧРП. Одним из преимуществ работы ЧРП является то, что при увеличении скорости двигателя он ограничивает ток двигателя, чтобы избежать этих больших пиков.

Центробежный выключатель в однофазных двигателях с конденсаторным пуском

Существует несколько различных конструкций однофазных двигателей. Я выделю тот, который я чаще всего встречал в промышленных приложениях — с конденсаторным пуском и центробежным переключателем. В конструкции используется конденсаторная сеть, которая находится в цепи двигателя на малых скоростях. Конденсаторы помогают обеспечить крутящий момент при нулевой скорости и запустить двигатель в правильном направлении.

Общая схема подключения однофазного двигателя – с конденсаторами и центробежным выключателем.

Когда двигатель вращается и имеет инерцию, центробежный переключатель размыкается, и цепь конденсаторов отключается от первичной обмотки двигателя. Скорость, при которой переключатель размыкается, происходит до достижения двигателем нормальной рабочей скорости 60 Гц.

По этой причине не рекомендуется использовать двигатель, рассчитанный на 50 Гц, в сети 60 Гц. По крайней мере, без замены или регулировки центробежного переключателя. Возможно, что переключатель никогда не размыкается при работе на частоте 50 Гц. Это может повредить конденсаторы или перегреть обмотки двигателя.

Связанная статья: Тепловая защита двигателя

Аналогичная проблема возникает при использовании частотно-регулируемого привода для управления скоростью однофазного двигателя. Снижение скорости эффективно удерживает конденсаторы в цепи в течение длительного периода времени и потенциально может повредить двигатель.

Однофазный вход в ЧРП

Итак, если вы не можете использовать ЧРП с этой конструкцией однофазного двигателя, каково решение? Ответ заключается в том, чтобы ввести одну фазу в ЧРП. ЧРП может действовать как преобразователь фазы и выводить трехфазное напряжение на трехфазный двигатель.

Есть некоторые соображения, особенно в отношении размеров. Некоторые частотно-регулируемые приводы спроектированы и рассчитаны на ввод как однофазных, так и трехфазных сигналов. Обратитесь к производителю VFD, но вы увидите что-то подобное в руководстве, которое обозначает обе фазы.

Для более крупных приводов номиналы, как правило, указывают только на 3-фазный вход. Однофазный вход возможен, но, вероятно, потребуется однофазное снижение номинальных характеристик.

Давайте рассмотрим приложение ЧРП с трехфазным входом, работающим от двигателя мощностью 10 л.с. Предположим, что потерь нет и PowerIN = PowerOUT. Входной ток и выходной будут одинаковыми.

Входная мощность распределяется по трем фазам.

Теперь возьмем то же приложение с двигателем мощностью 10 л.с., но с однофазным входом. ВХОД питания = ВЫХОД питания. За исключением того, что вся мощность на входе теперь идет по одному проводнику вместо трех. Фактически к однофазному входному току применяется коэффициент √(3) по сравнению с трехфазным током.

Вся входная мощность (ток) протекает по одному проводнику.

Опять же, приводы некоторых типоразмеров уже имеют входные выпрямители с завышенными параметрами и могут выдерживать повышенный однофазный входной ток — это должно отражаться в номинальных характеристиках силового каскада. Для более крупных приложений HP конечным результатом может стать увеличение размера привода для обработки большего входного тока.

Как правило, мы предлагаем округлить и предположить, что однофазный входной ток будет вдвое больше, чем трехфазный входной ток.

Наконец, рекомендуется использовать сетевой дроссель 5 % при подаче на привод однофазной входной мощности. При включении питания на привод будет подаваться зарядный ток. Дроссель 5% поможет снизить пиковый зарядный ток и защитить входной каскад выпрямителя частотно-регулируемого привода.

Как насчет стоимости?

Однофазные двигатели, особенно двигатели большой мощности, имеют надбавку к цене. Быстрый расчет того же двигателя мощностью 10 л.с., показанного выше, и однофазного варианта дает надбавку к стоимости на 60%. Я предполагаю, что часть дополнительных затрат связана с добавлением частей конденсаторной сети и коммутатора. Другая часть стоимости связана с тем, что более крупные однофазные асинхронные двигатели являются более специализированными по сравнению с трехфазными типами.

Добавьте дополнительную стоимость частотно-регулируемого привода/реактора, но также вычтите надбавку за однофазный двигатель. Я думаю, вы обнаружите, что общая стоимость добавления частотно-регулируемого привода намного меньше, чем вы думаете.

Стоит ли покупать роторный преобразователь?

Фазовый преобразователь, безусловно, является опцией. Он преобразует однофазную мощность в трехфазную. Но это все, что он делает. Он не предлагает многих преимуществ, которые предлагает частотно-регулируемый привод. Это включает в себя возможность управления скоростью двигателя, лучшую производительность на низких скоростях, функции защиты и контроль температуры двигателя.

Аналогичный аргумент можно привести и в отношении стоимости фазового преобразователя. Фазовый преобразователь, скорее всего, не сэкономит много денег, если вообще сэкономит, по сравнению с приводом.

Преимущества использования частотно-регулируемых приводов в однофазных системах

Пользователь получит выгоду от перехода от двигателя с питанием от сети к двигателю с частотно-регулируемым приводом. Они смогут оптимизировать скорость двигателя для процесса. Возможно, это означает замедление конвейера во время загрузки вместо полного отключения двигателя. Слегка нагруженные двигатели также могут быть разогнаны для ускорения процессов, например, конвейера или шнека.

Пользователь также получит выгоду от экономии энергии благодаря частотно-регулируемому приводу. Особенно для приложений с квадратичной нагрузкой, таких как вентиляторы и насосы. Чем выше пошлина приложения, тем больше будет экономия. Добавьте к приложению некоторую базовую обратную связь, например, датчик температуры или влажности, и ЧРП можно подключить для регулирования процесса. KEB F5 даже имеет встроенный ПИД-регулятор, поэтому весь процесс можно регулировать внутри привода, что устраняет необходимость во внешнем ПЛК или системе управления. ситуации.

  • Повышенное/пониженное напряжение — автоматическое отключение при отключении или скачке напряжения.
  • Перегрев двигателя — для этой опции требуется термистор или датчик температуры двигателя. Это защищает инвестиции в двигатель и является хорошей идеей для дорогих двигателей, двигателей, которые трудно обслуживать, а также для приложений с высокой температурой окружающей среды.
  • Защита от перегрузки по току — может обнаружить аномальную неисправность, такую ​​как короткое замыкание обмотки двигателя и отключение.

Как рассчитать пусковой конденсатор для однофазного двигателя?


Расчет пускового конденсатора для однофазного двигателя включает несколько шагов:

  1. Определите емкость рабочего конденсатора (C) двигателя в микрофарадах (мкФ). Эта информация обычно указана на маркировке двигателя или в технических спецификациях.

  2. Определите коэффициент мощности (cosφ) двигателя. Этот показатель также указан на маркировке двигателя или в технических спецификациях. Обычно это значение находится в диапазоне от 0,6 до 0,9.

  3. Определите необходимый пусковой ток двигателя (I_p), используя следующую формулу:

    I_p = I_n / (cosφ × k)

    где I_n — номинальный ток двигателя, указанный на маркировке или в технических спецификациях;
    k — коэффициент запаса, обычно принимающий значение 1,2 для однофазных двигателей.

  4. Определите емкость пускового конденсатора (C_p) с использованием следующей формулы:

    C_p = (I_n / (2πfΔV)) × (1 / (cosφ_p — cosφ))

    где f — частота питающей сети;
    ΔV — допустимое понижение напряжения при пуске двигателя, обычно принимающее значение от 20% до 40%;
    cosφ_p — коэффициент мощности при пуске, обычно принимающий значение 0,35 для однофазных двигателей.

  5. Выберите наиболее близкое доступное значение пускового конденсатора из стандартного набора значений.

Важно отметить, что расчет пускового конденсатора является достаточно сложным процессом, и требует знаний в области электротехники. Некорректный выбор пускового конденсатора может привести к неправильной работе двигателя, а также к его быстрому выходу из строя. Поэтому важно обратиться к профессионалам или использовать специализированные программы для расчета пусковых конденсаторов.


Видео. Подключение однофазного двигателя без конденсатора и через конденсатор